

Runaway generation and losses during disruptions in the TEXTOR tokamak

L. Zeng^{1, 2*},H.R. Koslowski¹, Y. Liang¹, A. Lvovskiy¹, M. Lehnen^{1,3}, S.A. Bozhenkov⁴, D. Nicolai¹, P. Denner¹, J. Pearson¹, M. Rack¹, H. Jaegers¹, K.H. Finken⁵, K. Wongrach⁵, Y. Xu⁶ and the TEXTOR team

¹Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research - Plasma Physics (IEK-4), Association EURATOM-FZJ, Trilateral Euregio Cluster, 52425 Jülich, Germany
 ²Institute of Plasma Physics, Chinese Academy of Sciences, 230031 Hefei, China
 ³present address: ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance, France
 ⁴Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
 ⁵Institutfür Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
 ⁶Laboratoire de Physique des Plasmas – Laboratorium voor Plasmafysica, Association 'Euratom-Belgian state', Ecole Royale Militaire – Koninklijke Militaire School, Trilateral Euregio Cluster, 1000 Brussels, Belgium

531st Wilhelm and Else Heraeus Seminar **3D versus 2D in Hot Plasmas**30th April – 2nd May 2013,
Physikzentrum Bad Honnef, Germany

*Email: *l.zeng@fz-juelich.de*

- Runaway generation
 - Dreicer generation,
 - Hot tail generation,
 - Tritium decay,
 - Compton scattering of γ rays from the activated wall,
 - Runaway avalanching.

- Runaway losses
 - Synchrotron radiation,
 - Bremsstrahlung,
 - Plasma instabilities,
 - RE diffusion due to magnetic fluctuations,
 - Unconfined drift orbit losses,
 - Resonance between gyromotion and magnetic field ripple.

- Runaway generation
 - Dreicer generation,
 - Hot tail generation,
 - Tritium decay,
 - Compton scattering of γ rays from the activated wall,
 - Runaway avalanching.

- Runaway losses
 - Synchrotron radiation,
 - Bremsstrahlung,
 - Plasma instabilities,
 - RE diffusion due to magnetic fluctuations,
 - Unconfined drift orbit losses,
 - Resonance between gyromotion and magnetic field ripple.

Disruptions are deliberately triggered by an injection of large amounts of Argon using a fast disruption mitigation valve (DMV) on TEXTOR.

Plasma parameters:

- *B*_t= 1.7-2.6 T,
- \circ *I*_P = 300-350 kA,
- $\circ n_{\rm e} = 2.0 \times 10^{19} \,{\rm m}^{-3}$,
- *R* = 1.75 m,
- o *a* = 0.46 m and
- $\circ N_{\rm Ar} = 2.3 \times 10^{21} 1.9 \times 10^{22}.$

- ➢ Different toroidal magnetic field ⇒ different runaway tail.
- Obvious magnetic turbulence is observed in the magnetic pick-up coils.
 - The magnetic turbulence appears at the beginning of the current quench and lasts from 4 to 8 ms.
 - It is a broadband frequency turbulence and most of the power is in the range of 60~260 kHz.

- Even in the same toroidal magnetic field, the RE plateau is not reproducible.
- The magnetic turbulence level could be the reason to cause the difference.

The role of magnetic field fluctuations

• The characteristic diffusion time associated with magnetic turbulence

$$\tau_{\delta B} = \frac{a^2}{v_{\parallel} D_M} \gamma^5 \qquad \text{where} \qquad D_M \approx \pi q R (\delta B / B_t)^2$$

- In theory, $\partial B/B_t > 0.1\%$ could suppress the runaway avalanche during the disruptions.
- In present tokamak experiments,
 - External excited magnetic perturbations (Resonant Magnetic Perturbations) JT-60U, TEXTOR
 - The magnetic fluctuation level is correlated with the hard X-ray signal after the disruptions JET
 - Intrinsic magnetic turbulence on the de-confinement of runaway electrons during the flattop phase of low density discharges **TEXTOR**

Runaways occur after a disruption when the value of B_t exceeds the threshold (~ 2 T) in TEXTOR.

The runaway tail is not reproducible.

- The runaway current is a function of the maximum magnetic turbulence during the current quench.
- The runaway plateau is almost invisible when the normalized magnetic turbulence exceeds the threshold of about 4.8×10⁻⁵.

The level of magnetic turbulence is strongly dependent on the toroidal magnetic field.

The magnetic turbulence is mainly contributed from the background plasma.

$$\frac{dn_{\text{RE}}}{dt} = \frac{f_{\text{prim}}}{+(1/\tau_{\text{RE}} - 1/\tau_{\text{loss}})n_{\text{RE}}}$$
Dreicer generation Avalanche Process RE losses

- With high magnetic turbulence, the runaway diffusion time should be shorter than the avalanche growth time and therefore suppress avalanche generation of runaways.
- $1/\tau_{\text{RE}} \sim 260 \text{s}^{-1}$ @ $B_{\text{t}} = 2.4 \text{ T}$, $N_{\text{Ar}} = 3.8 \times 10^{21}$, R = 1.67 m, a = 0.35 m, q = 2, $v_{//} \approx \text{c} = 3 \times 10^8 \text{ m/s}$ and $\gamma = 3$.
- The corresponding threshold of magnetic turbulence is <u>~ 2.2×10⁻³</u>.

The measured values (\sim 4.8 \times 10⁻⁵), two magnitude lower?

- Magnetic turbulence during the current quench is found to be poloidally asymmetric, which could be caused by the plasma shrinking and moving inward.
- Assuming m=10, the plasma movement inwards by 8 cm and shrink to 0.35 m, the simulated signals are similar to the measured ones. The magnetic turbulence level at the plasma edge $\delta B/B_t \approx 2.4 \times 10^{-3}$.

 \Box Keep all the parameters fixed and vary only $1/\tau_{loss}$ (γ) : 35 \rightarrow 3000 s⁻¹

Increasing the loss rate, clearly reduces the runaway current and consequently the plateau amplitude.

The dependence of the runaway current on the loss rate.

- There are clearly two regions: a linear decay for γ < 350 s⁻¹ and for γ > 350 s⁻¹:
 - the linear fit to the first region is consistent with experiments;
 - The second linear decay appears because of the Dreicer mechanism, which is very powerful but short in time, at this point the avalanche is suppressed.

- Magnetic turbulence (broadband frequency) is observed at the beginning of the current quench in intended TEXTOR disruptions.
- Runaway suppression has been experimentally found only with magnetic turbulence larger than a threshold.
 - This gives a consistent explanation for the B_t threshold.
 - For shots with lower magnetic turbulence level than the threshold, the runaway current decreases linearly with $\delta B/B_t$.
- Magnetic turbulence is mainly contributed from the background plasma and the level is strongly dependent on the toroidal magnetic field and plasma electron density.

- Runaway generation
 - Dreicer generation,
 - Hot tail generation,
 - Tritium decay,
 - Compton scattering of γ rays from the activated wall,
 - Runaway avalanching.

- Runaway losses
 - Synchrotron radiation,
 - Bremsstrahlung,
 - Plasma instabilities,
 - RE diffusion due to magnetic fluctuations,
 - Unconfined drift orbit losses,
 - Resonance between gyromotion and magnetic field ripple.

- Setup: Decrease density from 3.0×10¹⁹ m⁻³ to 2.0 ×10¹⁹ m⁻³ with the same plasma current (350 kA) and toroidal magnetic field (2.4 T).
- ✤ The different plasma temperature before disruptions ⇒ the runaway tail is totally different.
 - The primary generation due to the Dreicer electric field and the loss due to the magnetic turbulence are almost similar.

Hot tail runaway generation

- Hot tail runaway electron generation is caused by incomplete thermalization of the electron velocity distribution during rapid plasma cooling [1, 2, 3].
- It is an important runaway generation mechanism in tokamak disruptions if the thermal quench phase is sufficiently fast.
- For TEXTOR, the typical thermal quench time during disruptions is $\sim 200 \,\mu s$.

[1] P. Helander et al., Phys. Plasmas **11**,5704 (2004)

[2] H. Smith et al., Phys. Plasmas 12,122505 (2005)

[3] H. M. Smith and E. Verwichte, Phys. Plasmas 15, 072502 (2008)

May 2, 2013

$$T = T_{\text{final}} + (T_0 - T_{\text{final}})e^{-t/t_0}$$

$$n = n_{\text{final}} - (n_{\text{final}} - n_0)e^{-t/t_0}$$

$$\tau(t) \simeq H(t - t_0) \frac{n_{\text{final}}}{n_0} v_0(t - t_0)$$

- ⇒ The temperature evolution
- ⇒ The electron density evolution
- A time delay before the distribution begins to decrease
- v_0 is the collision frequency and t_0 is the temperature decay time.

The density of hot tail runaways during the thermal quench

$$n_{\rm run}^{h} = \int_{v_c}^{\infty} f \, 4\pi v^2 dv \simeq n_0 \, \frac{2}{\sqrt{\pi}} \, u_c e^{-u_c^2}$$

• where $u_c = (v_c^3 / v_{T_0}^3 + 3\tau)^{1/3}$

* H. M. Smith and E. Verwichte, Phys. Plasmas 15, 072502 (2008)

- Decay time scan
 - Hot tail RE generation increases with faster decay.
- Temperature scan
 - Hot tail RE generation increases with higher temperature before the disruptions.

Criteria for hot tail runaway generation more than the Dreicer mechanism during the disruptions [1]:

Criteria for hot tail runaway generation

$$v_0 t_0 < \frac{1}{3} (\frac{E_D}{2E_{\parallel}})^{3/2} \text{ and } \frac{E_D}{E_{\parallel}} \simeq (\frac{\pi T}{2m_e})^{1/2} \frac{3\mu_0 enqR}{B_t}$$

Using the parameters of a typical TEXTOR discharge,

 $v_0 t_0 \simeq 3.0$ while the criterion gives $v_0 t_0 < 6.6$.

A high-energetic electron tail could form during TEXTOR disruptions.

[1] H. Smith et al., Phys. Plasmas 12,122505 (2005)

• RE plateau @ $B_t = 1.7 T (< 2 T)$.

- Setup: Decrease density from 1.5×10¹⁹ m⁻³ to 0.8 ×10¹⁹ m⁻³ with the same plasma current (260 kA) and toroidal field (1.7 T).
- The different temperature

 \Rightarrow the different runaway tail.

 \Rightarrow The clear runaway tail @ $B_{\rm t} = 1.7$ T and $n_{\rm e} = 0.8$ $\times 10^{19} \,{\rm m}^{-3}$

*Threshold for REs during the flattop: $n_{\rm e} \sim 0.7 \times 10^{19} \,{\rm m}^{-3}$.

- Density threshold for RE generation for the fixed B_t and B_t threshold for the fixed n_e;
- The density threshold increases with *B*_t.
- The runaway current is a function of B_t and n_e (or T_e) before the disruptions.

Valid only in Ohmic discharges!!

- Hot tail RE generation has been observed in the TEXTOR disruptions.
 - Simulation results support the experimental observation.
 - More REs are generated by hot tail than by the Dreicer mechanism for fast thermal quench.
- Obvious RE tail is observed at $B_t = 1.7 \text{ T} (< 2 \text{ T})$.
- Density threshold for RE generation is also found in TEXTOR. The density threshold increases with B_{t} .

- The occurrence of runaways depends on various factors and no clear runaway generation dependence on plasma parameters is found in theories or experiments until now.
- Runaway generation occurs only above a threshold for the toroidal magnetic field of about 2 T in JET [1], JT-60U [2], Tore Supra [3], and TEXTOR [4].
- A possible explanation is that the whistler wave instability can be excited by runaways for $B_t < 2 \text{ T}$ [5]. \bigotimes
- [1] R. D. Gill et al., Nucl. Fusion **42**, 1039 (2002)
- [2] R. Yoshino, S. Tokuda and Y. Kawano, Nucl. Fusion **39**, 151 (1999)
- [3] G. Martin, in *Proceedings of the 25th European Physical Society Conference on Plasma Physics, Prague, 1998* (European Physical Society, Prague, Czech Republic, 1998), Vol. 22C, P.3.006
- [4] M. Lehnen et al., J. Nucl. Mater. 390–391, 740 (2009)
- [5] T. Fülöp, H. M. Smith, and G. Pokol, Phys. Plasmas 16, 022502 (2009)

- For discharges performed in different operating gases, e.g. He-2, Ne-10, Ar-20, the amplitude of magnetic fluctuations during current quench increase with increasing ion mass.
- Amplitude of magnetic fluctuations reduce with increasing gas injection for every kind of gas.

High energy electron losses during the thermal quench

High energy electron losses possibly due to MHD activities during thermal quench.

