3D Effects on Disruptions and their Mitigation

T C Hender

EURATOM/CCFE Fusion Association, Abingdon, U

and JET EFDA contributors

CCFE is the fusion research arm of the United Kingdom Atomic Energy Author

Disruptions and their consequences are 3D

Pre-disruption energy loss, 3-D
precursors

- Thermal quench and current quench
- Consequences heat + EM loads, VDE, halos (which can be non-axisymmetric, i.e. 3-D)

EFJEA Disruption consequences

- Key issues to be resolved for disruptions:-
 - Forces (VDE symmetric load ~10,000 Tonnes, asymmetric -~5,000 Tonnes in ITER)
 - Heat Loads
 - Runaways (~10MA at 10-20MeV in ITER)

Examples from JET

3-D mechanisms causing disruptions

531st Hereaus seminar 30 April -2 May 2013 CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

Classical disruption picture

531st Hereaus seminar 30 April -2 May 2013 CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

Classical picture - energy loss is stochastic

EFJET Explosive instability picture

3-D consequences of disruptions:-

- Halo currents and EM forces
- Heat Loads
- Runaway electrons

Forces

- Forces from halo and eddy currents are the main design constraint on the vessel and in-vessel components in ITER
 - Symmetric loads on the vessel reach ~10,800 tonnes
 - Asymmetric sideways loads ~5,000 tonnes

Halo Currents can be toroidally asymmetric

Halo Current Asymmetries

CCFE Halo Current Asymmetries - theory

At q_a=2 m=2,n=1 kink distortion:-

Similar result at q=1, with m=n=1 kink

Halo currents can rotate

• Poloidal halo currents phase leads ΔI_p by ~90°

Halo current rotation important

- Vacuum vessel and coil systems have low frequency resonances
- Possibility of dynamic amplification

Mode	F (Hz)	Mass fraction
U – xy	2.77	0.95
U – z	8.61	0.77
Rot - xy	8.41	0.80
Rot - z	4.50	0.88

Natural frequencies of the 360° VV

EFFET No obvious pattern for why some shots have substantial halo rotation

Neighbouring similar shots have very different halo rotation

EFFEA Typically rotation of 2 turns and f~100Hz

But long tails to multi-turns and ~400Hz

S Gerasimov, 2012 EPS

Halo Asymmetry is m=1 dominantly

Consistent with *m*=*n*=1 kink mode (Zakharov et al)

W Current Asymmetries – 3D MHD

Strauss and Paccagnella, PoP 2010

Runaway electrons

- Runaway electrons are generated, which
 - are accelerated to ~ MeV range.
 - carry much of the original current.
 - usually hit the wall => hard X-rays.
 - can cause serious damage.
 - occasionally remain in the cool plasma (~ 10 eV) for several s.

EFIER RE event in JET

No REs left

Note the tokamak continued to operate normally after this event

EFJA Runaway Electron Heat Loads

Runaway Electron energy is localised

- The poloidal extent less than two tiles (area <1.3 m²) of which <u>only a</u> <u>fraction</u> is wetted (installation inaccuracy)
- 0.5 MJ in 2 ms give $\Delta T \sim 800^{\circ}C \rightarrow$ wetted area is $\sim 0.3 0.5 \text{ m}^2$

Disruption Control and Mitigation

531st Hereaus seminar 30 April -2 May 2013 CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

Known for a long time that applying static helical field can control rotating instabilities (e.g. 1980's on DITE and 1990's COMPASS-C)

m=2, n=1 control by applied helical fields

531st Hereaus seminar 30 April -2 May 2013 CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

Energy

Can extend disruption boundaries

 Also experiments using rotating helical fields as means of direct disruption control (e.g. on DITE)

COMPASS-C Hender NF 1992

Disruption Avoidance & Mitigation

Most popular mitigation method is massive gas injection (using noble gas)

valve screened by a protecting tile

• Very effective at reducing disruption forces and heat loads but not proven on REs

D Whyte et al Jrnl Nuc Mat 2003

Massive Gas Injection is localised (\Rightarrow 3D)

Energy

G Pautasso Nucl Fus 2011, $\phi=0^{\circ}$ is MGI neon injection location

E ALCATOR C-Mod two nearly opposite MGI's

1 gas jet results:-

2 gas jet results:-

- With 2 gas jets asymmetry can be controlled pre-thermal quench
- But MHD still affects asymmetry during thermal quench
- ITER plan with 3 equally spaced upper port toroidal locations and 1 equatorial port for MGI

- Disruptions are caused by helical instabilities and are ... intrinsically 3D
- More importantly consequences are 3D:-
 - Halo currents non-symmetric toroidal (leads to sideways forces on vacuum vessel, more difficult to handle)
 - Non-symmetric halo currents can rotate ⇒ can cause mechanical resonances
 - Runaway electron power loads can be non-symmetric due to asymmetries in surrounding structures
- Disruption control by applied helical fields demonstrated but not considered viable in general (risk of locked modes)
- Disruption mitigation by massive gas injection local radiation loads a issue ⇒ multiple injection locations on ITER (needs careful timing)

