

Overview — Impact of 3D fields (RMP) on edge turbulence and turbulent transport

Yuhong Xu

Laboratory for Plasma Physics, Ecole Royale Militaire - Koninklijke Militaire School, Euratom-Belgian State Association, Avenue de la Renaissance 30, B-1000 Brussels, Belgium* On assignment at Plasmaphysik (IEK-4) Forschungszentrum Juelich, Germany * Partner in the Trilateral Euregio Cluster (TEC)

Thanks to: all contributors and the TEXTOR team !

Outline

- Introduction (how/why RMP affects edge turbulence?)
- Experimental setup
- Experimental results (TEXTOR + other machines)
 - Impact of RMP on edge equilibrium profiles (T_e, n_e, ϕ , E_r)
 - Impact of RMP on edge fluctuation amplitude and transport
 - Impact of RMP on edge turbulence spectrum [S(f), S(k)]
 - Impact of RMP on blob transport in the SOL
 - Impact of RMP on GAM zonal flows
- Summary

Introduction

• How/Why does the RMP affect edge turbulence ?

RMP coils \Rightarrow Magnetic perturbation of B_r (δ B_r/B ~ 10⁻³)

 \Rightarrow island (chains) at resonant surfaces \Rightarrow overlap (stochastic)

- $-\delta B_r$ induces radial electron current \Rightarrow new charge balance of j_r
- δB_r induces radial field-line diffusion/transport by $D_M = (\delta B_r/B)^2 L_c (D_\perp \propto D_M C_s)$
- $--\delta B_r \text{ modifies the } k_{//} \text{ dynamics, } \nabla_{//} = (\mathbf{b}_0 + \delta \mathbf{b}_r) \bullet \nabla \implies \text{affect turbulence eddies}$
- δB_r opens field lines at plasma boundary \Rightarrow increase sheath dissipation

Distinction of ergodic zone (EZ) and laminar zone (LZ)

EZ: (i) $L_c > L_k$ (e-folding length of adjacent field lines); (ii) $\sigma_c > 1$ **LZ:** $L_c < L_k$, stochasticity has no meaning / parallel transport dominates

Experimental setup (RMP)

 TEXT
 7/2, 7/3

 Tore Supra
 18/6

 DIII-D
 8-15/3

 JET
 2-3/1-2

 MAST
 20/3+5/3

 AUG
 m/1-4

 TEXTOR
 3/1,6/2,

 12/4

TEXTOR-DED (O. Schmitz, NF48, 024009)

Resonant surface at $q \sim 3$

Diagnostics for edge turbulence study at TEXTOR

Outline

- Introduction (how/why RMP affects edge turbulence?)
- Experimental setup
- Experimental results (TEXTOR + other machines)
 - Impact of RMP on edge equilibrium profiles (T_e, n_e, ϕ , E_r)
 - Impact of RMP on edge fluctuation amplitude and transport
 - Impact of RMP on edge turbulence spectrum [S(f), S(k)]
 - Impact of RMP on blob transport in the SOL
 - Impact of RMP on GAM zonal flows
- Summary

Impact of RMP on edge equilibrium profiles (I)

Typical RMP discharge waveform at TEXTOR (6/2 DED)

Similar impact of RMP on V_f profile in other machines

(SOL / X-point)

P. Tamain, PPCF 52, (2010)

(Limiter)

A. Wootton, JNM 176-177 (1987)

Impact of RMP on edge equilibrium profiles (II)

Understanding the change of E_r by RMP What is neoclassical E_r?

$$\begin{cases} \frac{\partial (mn\vec{V})}{\partial t} + \vec{\nabla} \cdot (mn\vec{V}\vec{V}) + m\vec{\nabla} \cdot (n\vec{R}\vec{S}) = -\vec{\nabla}p - \vec{\nabla} \cdot \vec{\Pi} + \vec{J} \times \vec{B} - \nu\vec{V}, \\ \frac{\partial n}{\partial t} + \vec{\nabla} \cdot (n\vec{V}) = 0, \\ \Rightarrow \quad \begin{cases} \left\langle B \cdot \frac{\partial (mnV_{||})}{\partial t} \right\rangle = -\langle \vec{B} \cdot \vec{\nabla} \cdot \vec{\Pi} \rangle - \langle \nu BV_{||} \rangle - m\langle \vec{B} \cdot \vec{\nabla} \cdot (n\vec{R}\vec{S}) \rangle, \\ \left\langle \frac{1}{B_{\theta}} \frac{\partial (mnV_{\phi})}{\partial t} \right\rangle = -\left\langle \frac{1}{B_{\theta}} (\vec{\nabla} \cdot \vec{\Pi})_{\phi} \right\rangle + \langle J_{r}^{i} \rangle - \left\langle \frac{1}{B_{\theta}} \nu V_{\phi} \right\rangle - m\left\langle \frac{1}{B_{\theta}} (\vec{\nabla} \cdot (n\vec{R}\vec{S}))_{\phi} \right\rangle. \end{cases}$$

$$V_{||} = \frac{1}{\sin \alpha} \cdot \left[\frac{1}{\xi} \cdot \frac{F(r)}{R_0} - \xi \cos^2 \alpha \frac{V(r)}{B_0} \right] = 0, \qquad \qquad \frac{F(r)}{R_0} = \langle V_\theta \rangle$$
$$V_\phi = \frac{1}{\Theta} \cdot \left[\frac{1}{\xi} \cdot \frac{F(r)}{R_0} - \xi \frac{V(r)}{B_0} \right] = 0, \qquad \qquad \frac{V(r)}{B_0} \sim \langle V_\perp \rangle$$

$$\Rightarrow \qquad J_r = J_r^{i} = J_r^{neo} = \sigma^{neo} (E_r - E_{r,amb}^{neo})$$

$$\sigma^{neo} = \frac{mn\nu^*}{\Theta^2 B_0} \cdot \frac{C^*/\nu^* + \Theta^2(1 + 2q^2)}{C^*/\nu^* + (1 + \Theta^2)} \cong \mathbf{10^{-3} / \Omega m}$$

$$E_{r,amb}^{neo} = \frac{1}{en} \frac{\partial p_i}{\partial r} - \frac{1}{\sigma^{neo}} \left(\frac{CV^{neo}}{\Theta B_0^2} \cdot \frac{1}{C^*/\nu^* + (1 + \Theta^2)} + \frac{m}{B_0} \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 (n\vec{RS})_{r,\theta}) \right)$$

Understanding the change of E_r by RMP

Comparison with theoretical modelling on E_r profiles

Inside the plasma edge, theoretical modelling of E_r agrees well with experimental results both w/o RMP.

Outline

- Introduction (how/why RMP affects edge turbulence?)
- Experimental setup
- Experimental results (TEXTOR + other machines)
 - Impact of RMP on edge equilibrium profiles (T_e , n_e , ϕ , E_r)
 - Impact of RMP on edge fluctuation amplitude and transport
 - Impact of RMP on edge turbulence spectrum [S(f), S(k)]
 - Impact of RMP on blob transport in the SOL
 - Impact of RMP on GAM zonal flows
- Summary

Impact of RMP on edge fluctuation amplitude and transport

12/4 DED, TEXTOR $EZ \mid LZ$ 6/2 DED, TEXTOR SOL 15 10 5 20 2.0 ահակա (b) I_{DED1} (a) E^{θ_}RMS [k//μ] 1.0 0.5 15 ուսես -5 I_{DED5} φ_i_RMS [V] **Ē**θ =18Ē **∮**_f ñ_e 10 0.06 0.05 0.04 5 0.03 0.02 ñ_e 0.0 0.01 90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10 0.00 r/a r/a r/a 500 400 300 **∮**_f 200 6/2 DED, TEXTOR 100 3/1 DED, TEXTOR $EZ \mid LZ$ SOL 2 2 $\mathbf{\tilde{E}}_{\theta}$ Щъ 1 0 0 $\Gamma_{\rm r} = \langle \tilde{n}_{\rm e} \tilde{E}_{\theta} \rangle / B$ — 1 -2 Γ_{r} Γ_r -4 2.5 3.0 3.5 1.0 1.5 2.0 0.5 4.0 0.95 1.00 1.05 0.90 0.95 1.00 1.05 1.10 1.10 time (s) r/a r/a

Y. Xu et al., NF 47, 1696 (2007) Y. Xu et al., PRL 97, 165003 (2006) Radial profiles of fluctuations without (open points) and with (solid points) RMP.

(c)

^{12/4} DED, stationary probe in Ergodic Zone

J. Payan, NF 35, 1357 (1995)

P. Tamain, PPCF 52, 075017(2010)

Very similar to TEXTOR results !

Outline

- Introduction (how/why RMP affects edge turbulence?)
- Experimental setup
- Experimental results (TEXTOR + other machines)
 - Impact of RMP on edge equilibrium profiles (T_e , n_e , ϕ , E_r)
 - Impact of RMP on edge fluctuation amplitude and transport
 - Impact of RMP on edge turbulence spectrum [S(f), S(k)]
 - Impact of RMP on blob transport in the SOL
 - Impact of RMP on GAM zonal flows
- Summary

Impact of RMP on edge turbulence spectrum [S(f)]

Y. Xu et al., NF47 (2007), PRL97, (2006)

J. Robinson, PPCF54, 105007 (2012)

Impact of RMP on edge turbulence spectrum [S(k)]

RMP effects on "correlation length"

RMP effects on turbulence propagation

Contour plots of $S(k_{\theta}, f)$

RMP effects on turbulence propagation

— At TEXTOR, influence of RMP on the poloidal rotation is consistent with E_rxB drift.

— In MAST tokamak, a similar reversal of poloidal rotation is observed.

Outline

- Introduction (how/why RMP affects edge turbulence?)
- Experimental setup
- Experimental results (TEXTOR + other machines)
 - Impact of RMP on edge equilibrium profiles (T_e , n_e , ϕ , E_r)
 - Impact of RMP on edge fluctuation amplitude and transport
 - Impact of RMP on edge turbulence spectrum [S(f), S(k)]
 - Impact of RMP on blob transport in the SOL
 - Impact of RMP on GAM zonal flows
- Summary

Intermittent blob transport in the SOL

Y. Xu et al., PPCF(2005), NF(2009)

Impact of RMP on blob transport in the SOL

Y. Xu et al., NF49, 035005 (2009), consistent with modelling D. Reiser PoP 14, (2007)

Interpretation:

$$\begin{cases} \frac{M_{i}n_{0}}{B^{2}}\frac{\partial}{\partial t}\nabla_{\perp}^{2}\widetilde{\phi} = \nabla_{\parallel}\widetilde{J}_{\parallel} - \kappa(\widetilde{p}) \\\\ \frac{\partial\widetilde{n}}{\partial t} = -\widetilde{V}_{E,r}\nabla n + \nabla_{\parallel}\widetilde{J}_{\parallel} / e - \nabla_{\parallel}(n_{0}\widetilde{V}_{\parallel,i}) + n_{0}\kappa(\widetilde{\phi}) - \frac{T_{e}}{e}\kappa(\widetilde{n}) \end{cases}$$

- generation $\kappa \times \nabla n$
- dissipation $\nabla_{//}J_{//} \propto \text{neC}_s/L_c$ O. Garcia, PoP (2006)

11 ... 2

- (i) Nonzero k_{//} damp turbulence eddy development
 => suppress large eddy (blob) structures.
- (ii) Shorter L_c with RMP enhances the sheath dissipation
 => radial velocity decreases.

Outline

- Introduction (how/why RMP affects edge turbulence?)
- Experimental setup
- Experimental results (TEXTOR + other machines)
 - Impact of RMP on edge equilibrium profiles (T_e , n_e , ϕ , E_r)
 - Impact of RMP on edge fluctuation amplitude and transport
 - Impact of RMP on edge turbulence spectrum [S(f), S(k)]
 - Impact of RMP on blob transport in the SOL
 - Impact of RMP on GAM zonal flows
- Summary

Impact of RMP on GAM zonal flows

RMP reduces the LRC (V_f), which is dominated by GAM oscillations.

Y. Xu et al., IAEA (2010), EXC/9-3

Impact of RMP on GAM zonal flows

Y. Xu et al., PPCF53, 095015 (2011)

Impact of RMP on GAM zonal flows

GAM frequency \approx 10 kHz

TEXTOR

Y. Xu et al., NF51, 063020 (2011)

J. Robinson, PPCF54, 105007 (2012)

Impact of RMPon LRC and zonal flows (RFX-mod)

- Whereas LRCs are observed in tokamaks & stellarators, no clear signature of the LRC was seen hitherto in the edge of RFX-mod.
- The absence of LRC (ZF) in the RFP may due to magnetic stochasticity of island chains.
 P. Scarin et al., IAEA (2010), Daejeon

Possible mechanism - parallel dynamics (D. Reiser, et al.,)

$$\frac{M_{i}n_{0}}{B^{2}}\frac{\partial}{\partial t}\nabla_{\perp}^{2}\widetilde{\phi} = \nabla_{\prime\prime}\widetilde{J}_{\prime\prime} - \kappa(\widetilde{p})$$
⁽¹⁾

$$M_{i}n_{0}\frac{\partial \widetilde{V}_{//,i}}{\partial t} = -\nabla_{//}(\widetilde{p})$$
⁽²⁾

$$\frac{\partial \widetilde{n}}{\partial t} = \frac{1}{e} \nabla_{//} \widetilde{J}_{//} - \nabla_{//} (n_0 \widetilde{V}_{//,i}) + n_0 \kappa(\widetilde{\phi}) - \frac{1}{e} \kappa(\widetilde{p})$$
(3)

$$\nabla_{\prime\prime}\widetilde{p}_{e} - n_{0}e\eta_{\prime\prime}\widetilde{J} - n_{0}e\nabla_{\prime\prime}\widetilde{\phi} = 0$$
⁽⁴⁾

$$\frac{\partial \widetilde{V}}{\partial t} = -\frac{C_s^2}{R_0 n_0} \widetilde{n} - \gamma_{RMP} \widetilde{V} , \qquad \gamma_{RMP} = \frac{m_*^2 A_0^2}{2r_0^2 m_i n_0 \eta_{//}}$$

$$\omega^{3} + i\gamma_{RMP}\omega^{2} - \frac{2C_{s}^{2}}{R_{0}^{2}}(1 + \frac{1}{2q^{2}})\omega - i\frac{\gamma_{RMP}C_{s}^{2}}{q^{2}R_{0}^{2}} = 0$$

w/o RMP,
$$\gamma_{\rm RMP}=0 \implies \omega^2 = \frac{2C_s^2}{R_0^2}(1+\frac{1}{2q^2})$$

With RMP, $\gamma_{RMP} \neq 0 \implies$ damping effects on GAM !

$$\kappa = \frac{2}{B_0 R_0} (\sin \theta \frac{\partial}{\partial r} + \cos \theta \frac{\partial}{r_0 \partial \theta})$$

$$\nabla_{\perp}^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r_0^2} \frac{\partial^2}{\partial \theta^2}$$

$$\nabla_{\parallel} = \frac{1}{q R_0} \frac{\partial}{\partial \theta} + \frac{1}{R_0} \frac{\partial}{\partial \varphi} + \frac{1}{r_0 B_0} (\frac{\partial A^*}{\partial \theta} \frac{\partial}{\partial r} - \frac{\partial A^*}{\partial r} \frac{\partial}{\partial \theta})$$

$$A^* = A_0(r)\cos(m_*\theta - n_*\varphi), \qquad B_r = m_*A_0 / r_0$$

However, the complete effects by RMP on turbulence coupling are much more complex !

Impact of RMP on the radial profile of Renolds stress

 $I_p=250kA$, q(a)=5.9, $< n_{e0} > = 1.5x10^{19} \text{ cm}^{-3}$

 $I_p=200kA$, q(a)=6.3, <n_{e0}>=1.0x10^{19} cm^{-3}

More sophisticated model

by M. Leconte and P. Diamond

Phys. Plasmas **18**, 082309 (2011) Phys. Plasmas **19**, 055903 (2012)

RMP induce a linear coupling of zonal potential and zonal density

reduction of zonal flow energy by a predator-prey process.

Increase of L-H transition power threshold

What is the "cost-benefit ratio" of RMP?

(P. Diamond, Alfven Lecture 2011, Strasbourg)

Progress I: ZF's with RMP (with M. Leconte)

=0 kA

ITER 'crisis du jour': ELM Mitigation and Control

0.8

0.6

- Popular approach: RMP
- ? Impact on Confinement?

⇒ RMP causes drop in fluctuation LRC, suggesting reduced Z.F. shearing ⇒ What is "cost-benefit ratio" of RMP?

- Physics:
 - in simple H-W model, polarization charge in zonal annulus evolves according:

$$\frac{dQ}{dt} = -\int dA \left[\left\langle \widetilde{v}_x \widetilde{\rho}_{pol} \right\rangle + \left(\frac{\delta B_r}{B_0} \right)^2 D_{\parallel} \frac{\partial}{\partial x} \left(\left\langle \phi \right\rangle - \left\langle n \right\rangle \right) \right]_{r}^{r}$$

Key point: δB_r of RMP induces radial electron current \rightarrow enters charge balance

Summary

- With RMP, edge equilibrium profiles (n_e, T_e, V_f, E_r) are modified.
- **With RMP, edge fluctuation amplitudes and transport are affected.**
- ✤ With RMP, both S(f) and S(k) are modified.
- With RMP, turbulence correlation lengths are changed.
- With RMP, turbulence poloidal propagation changes sign, consistent with E_rXB flow change.
- With RMP, blob transport is reduced in the SOL.
- With RMP, GAM zonal flows are suppressed.

All above results suggest that a stochastic magnetic boundary by RMP may have profound influence on edge turbulence and turbulent transport, and hence, for plasma-wall interaction / plasma confinement.