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Outline

‣Part I 

‣ Axisymmetric fields (2D): turbulent transport 

‣Part II

‣ 3D fields: NTV

‣Part III

‣Which effect dominates?

Disclaimer: I am not a NTV expert...part of this talk may well be 
quite naive!!
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Before starting...

‣ To discuss rotation, a momentum evolution equation is needed
‣ Ideally, this evolution equation incorporates all possible/important 

mechanisms → useful framework derived by Callen, APS’09
‣Macroscopic quantities from moments of the distribution function:

f = f̄0 + f̄1 + . . .+ f̃1 + . . .

NTV turbulence

n =

Z
f dv u =

1

n

Z
vf dv

⇡ =

Z
m(v � u)(v � u)f dv

density flow

pressure 
tensor

‣ Evolution given by the Fokker-Planck equation
‣ Split the distribution function according to various ordering:
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Toroidal angular momentum evolution

NTV turbulence

[see e.g. Callen NF’09]

‣ Assume small non-axisymmetry and flux surfaces exist

‣ Take the momentum equation and:
‣ sum over species with
‣ toroidal projection
‣ flux surface average 
‣ incompressible flows
‣ consider transport time scales (slow)
‣ focus on NTV (non-resonant) and turbulent transport:

(neglect resonant JxB, cross-field neo. transport and sources)
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Part I - Turbulent transport

NTV turbulence
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‣ Assume an axisymmetric field → no NTV

‣Momentum flux carried by the particle flux neglected

�'

‣ In the following:
‣ Simple picture of the toroidal ITG 
‣Momentum flux driven by the toroidal rotation gradient (diag. part)
‣Momentum flux driven by the toroidal rotation (pinch part)
‣ A word on residual stress & summary table

⇠< nmRũrũ' +mRu'ũrñ >
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Simple picture of the toroidal ITG
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Magnetic drifts
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vd =
m

ZeB
(
v2?
2

+ v2k)
B⇥rB

B2

vfd / T

‣ Inhomogeneous magnetic field 
leads to curvature and ∇B drift

‣ Drift in the vertical direction 
and proportional to T
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Magnetic drifts
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Compression ➞ density perturbation
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Potential perturbation ➞ ExB drift
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‣ Potential perturbation implies ExB drift:

vE⇥B =
b⇥r�

B
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ExB drift ➞ radial convection
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‣ Potential perturbation implies ExB drift:

vE⇥B =
b⇥r�

B
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Temperature gradient ➞ instability&transport
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‣ Because of the temperature gradient hot 
plasma is convected into the hot spots and 
cold plasma into the cold spots

rT

Perturbation 
growth and 
radial heat 
transport
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What about rotation?
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‣ Finite rotation gradient and ITG turbulence

‣ ExB convection relaxes the rotation gradient 

rT high rotation

low rotation

Net radial flux 
of momentum

�'
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Diag. momentum flux ➞ flat rotation profile

minor
radius

edge
centre

rotation
radial flux of 
momentum

toroidal rotation 
gradient

momentum 
diffusivity

�'

‣ As soon as a toroidal rotation gradient 
exists, the radial flux of momentum 
induced by the ITG turbulence will relax 
this gradient
‣ Only stationary flat profiles are possible
‣Whole rotation profile determined by the 

boundary conditions

�' = �nmR0�'
@u'

@r�' = 0
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Same initial picture + background rotation
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‣Work in the co-moving frame
‣ Coriolis force due to toroidal 

rotation:
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Coriolis drift vertical and proportional to v//
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�? vk > 0

vk < 0
Coriolis drift:
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Coriolis drift dependence on v// is the key!
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‣ In the rotating frame, same number of 
particles with positive and negative 
parallel velocity
‣Coriolis drift dependence on v// splits 

the density perturbations
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Coriolis drift leads to momentum transport
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‣ Coriolis drift induces velocity perturbations 
then convected by the ExB drift
‣ Results into momentum transport
‣Momentum flux proportional to the frame 

rotation (i.e. the plasma rotation)

v+k
v�k
v+k
v�k
v+k

ExB convection of the 
velocity perturbation

�'



Yann Camenen WEH seminar - 30 April 2013

Coriolis pinch ➞ peaked rotation profile
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rotation radial flux of 
momentum toroidal rotation

pinch coefficient

‣ The Coriolis pinch (generally inward) 
tends to enhance the core rotation
‣ The diagonal part tends to relax the 

rotation gradient
‣ Rotation profile given by the balance 

between the two terms
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General picture

‣ Parallel symmetry breaking with respect to the midplane required to 
get turbulent momentum flux
‣ Symmetry breaking by:
‣ Toroidal rotation gradient → diagonal flux
‣ Toroidal rotation → Coriolis pinch
‣ Others → residual stress

‣ Generic expression for the turbulent momentum flux:

[Last overview: Peeters NF’11]

�
'
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]

diagonal pinch residual 
stress

‣ All terms tend to matter for intrinsic rotation!!
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Typical tokamak values

‣ Normalise with thermal velocity vth:

�
'

= nmvth�'
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1-3 0.1-0.3

‣ Prandtl number: �'/�i ⇠ 0.6� 1

‣ Pinch number:
‣ generally inward
‣ scales with the trapped particle fraction

‣ Stress number:
‣ inward or outward, many components
‣ can change sign at the ITG/TEM transition [Camenen NF’11]

RV
co

/�� ⇠ 1� 5

C⇤/�� ⇠ 0� 1

[Last overview: Peeters NF’11]

exp/th

exp/th

mainly th, few exp 
quantitative studies
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Part II - NTV

NTV turbulence
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‣ Now, forget about turbulence and assume small non-axisymmetric 
perturbations of the magnetic field, e.g. ripple

‣ In the following:
‣ A word on trapped particles orbits in rippled tokamaks
‣ Impact on the rotation profile
‣ Big brush picture

⇠< nmRũrũ' +mRu'ũrñ >
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Rippled tokamaks

‣Broken toroidal symmetry due to finite number N of toroidal field coils

B = B0[1� ✏ cos ✓][1� �(r, ✓)cosN']

ripple amplitude

‣Magnetic field given by:

‣In tokamaks, typically: 

�LCFS = 0.1%� 5%

JET:             0.1 - 1%
TCV/AUG:  1%
Tore Supra:  5-6%

[Hynonen PPCF’08]

3.2 Ripple trapping and stochastic di↵usion 3 COLLISIONLESS ORBITS
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Figure 3.1: Contour plot of the ripple magnitude (= � = (B�,max

�B�,min

)/(B�,max

+
B�,min

)) of the ASDEX Upgrade vacuum field. The ripple-well region is indicated
in the figure by the thick lines. In the white region around R ⇡ 1.3 m, the ripple
magnitude is below the color scale.

(i) pitch-angle scattering,

(ii) ripple-transport of banana particles,

(iii) acceleration by radio-frequency waves,

(iv) neutral beam injection.

Outside the ripple-well region, the e↵ect of ripple is limited to modification of banana

orbits through changes in particle pitch under the conservation of magnetic moment.

These variations cancel for passing orbits, but they are significant enough to move

the turning point for successive banana bounces and destroy the closure of the orbit.

For small displacements, this leads to periodic motion of the banana tips determined

by the periodicities of the ripple and toroidal precession. This does not in itself lead

19

�

AUG

�LCFS ⇠ 1%



Yann Camenen WEH seminar - 30 April 2013

Locally trapped particles

B = B0[1� ✏ cos ✓][1� �(r, ✓) cosN']

' = '0 + q✓
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toroidally trapped

locally
trapped

‣ Broken toroidal symmetry due to finite number N of toroidal field coils

‣ Along a field line,                     ,  local extrema in B may exist

‣ Local wells exist if:

‣ Particles can be trapped in 
these local magnetic wells

2�

Y =
✏

Nq�
| sin ✓| < 1

RATHER SMALL 
REGION IN TOKAMAKS
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Locally trapped particles

[Yushmanov RPP’90]

‣ Vertical drift until they escape 
the local well (or the plasma)

B = Cte
‣ Oscillations in the local wells:

vk ⇠ vth
p
� L ⇠ R/N

⌧l ⇠ R/(Nvth
p
�)

vd ⇠ mv2th
eBR

ez

‣ Radial diffusion with collisional 
detrapping:

⇠
p
� ·


vd
⌫e↵

�2
· ⌫e↵ = �3/2

v2d
⌫

⌫/�‣ Very bad for high energy particles...

‣ Can be effectively decreased by ExB drift
nl

�r

ripple

+ toroidicity
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Ripple also modifies banana orbits

[Yushmanov RPP’90]

toroidicity

+ ripple

‣Banana bounce time:

vk ⇠ vth
p
✏ L ⇠ qR

⌧t ⇠ qR/(vth
p
✏)

‣Parallel velocity modified by ripple:

vd ⇠ mv2th
eBR

ez

B/B0

vk =
p

2µ/m

q
B

bounce

� B̄ � B̃

‣Especially effective near bounce point

‣Radial excursion at banana tip:

⇠ ⇢(q/✏)3/2�
p
N
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Impact on rotation?

‣ Ripple modifies particle trajectories

‣ Exerts a JxB torque on the plasma 

‣ This enhanced particle flux is species dependent (non-ambipolar)

enhanced radial particle flux

radial current

‣ How large a torque for a given non-ambipolar diffusion?

toroidal acceleration

‣ Stops when Er makes the particle flux ambipolar

torque density 
[N.m/m3]

mnR
@ut

@t
= Re' · j⇥B = RjrBp

jr ⇠ e�na ⇠ eDnan

a
Bp ⇠ B✏/q

⇠ neB

q
Dna 0.2m2/s gives ~1-2 N.m/m3 

[1NBI source ~ 1-2N.m]
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NTV: general picture & estimates

‣Generic form of the NTV term: 

‣Kinetic approach required (at least at low collisionality) 
‣Can be computed analytically in various limits
‣Very useful to highlight the physics (many different regimes!!)

[e.g. Sun PRL’10, Satake PRL’11]

< Re' ·r · ⇡
ik >⇠ nm⌫

na

(< Rut > �< Runeo

t >)

damping rate offset rotation

Plasma Phys. Control. Fusion 54 (2012) 124033 K C Shaing et al

The magnetic field spectrum on the perturbed magnetic
surface can be represented in general as B = B0(1− εcosθ)−
B0

∑
m,n [bmnc cos(mθ − nζ ) + bmns sin(mθ − nζ )] in a torus,

where B0 is the magnetic field strength on the magnetic axis,
and bmnc and bmns are the Fourier amplitudes of the (m,n)

modes.

6.2. Bounce averaged drift kinetic equation

When the collisionality parameter ν∗ < 1, the neoclassical
toroidal plasma viscosity is calculated from the solution of the
bounce averaged drift kinetic equation [20]

〈vd · ∇ζ0〉b
∂f01

∂ζ0
+ 〈vd · ∇V 〉b

∂fM

∂V
= 〈C(f01)〉b, (6)

where f01 is the correction to f00 = fM(V ), V is the volume
inside the magnetic surface and ζ0 = qθ − ζ . Equation (6)
governs the physics of wobbling trapped particles and is to be
solved for transport fluxes where ν∗ < 1. The asymptotic
analysis is used to solve equation (6). Expressions for
〈vd · ∇ζ0〉b, 〈vd · ∇V 〉b and 〈C(f01)〉b in Hamada coordinates
are [20]

〈vd · ∇ζ0〉b = c&′

χ ′ − cµB0

eχ ′ ε′
[

2E(k)

K(k)
− 1

]
, (7)

〈vd · ∇V 〉b = cµB0

eχ ′
1

4K(k)

×
∑

n

∮
dθ

An(θ)(−n sin nζ0) + Bn(θ)(n cos nζ0)√
k2 − sin2(θ/2)

(8)

and

〈C(f01)〉b = νD

εK(k)

∂

∂k2

{[
E(k) − (1 − k2)K(k)

] ∂f01

∂k2

}
,

(9)

where the prime denotes d/dV , An(θ) =
∑

m{bmnc cos[(m −
nq)θ ] + bmns sin[(m − nq)θ ]}, Bn(θ) =

∑
m{−bmnc sin[(m −

nq)θ ] + bmns cos[(m − nq)θ ]}, and E(k) and K(k) are
the complete elliptic integral of the second and first
kind. The pitch angle parameter k2 is defined as k2 =
[E − e& − µB0(1 − ε)]/(2µB0ε), where E = Mv2/2 + e&

is the energy of the particle. It separates trapped particles that
have 0 ! k2 ! 1 from circulating particles that have k2 " 1.
The curvature drift in equation (7) is neglected because ε < 1.
We only use a pitch angle scattering operator because it has an
enhancement factor 1/ε. The effective collision frequency νeff

can be read off directly from equation (9), and is νD/ε.

6.3. Neoclassical toroidal plasma viscosity

The neoclassical toroidal plasma viscosity is calculated by
solving the kinetic equation in various asymptotic limits. The
results can be summarized in a log–log plot in figure 1.

The viscosities in the P–S and the plateau regimes are
calculated from the drift kinetic equation [21]. In the P–S
regime, πt = 〈Bt · ∇ · ↔

π〉 scales as ν/[(mωθ − nωζ )
2 + ν2]

instead of 1/ν because |mωθ −nωζ | can be larger than ν. Here,
ωθ = (v‖ + V‖)(ψ

′/B) + VE · ∇θ , ωζ = (v‖ + V‖)(χ
′/B) +

VE · ∇ζ , VE = cE × B/B2, χ is the toroidal flux divided

Figure 1. Neoclassical toroidal plasma viscosity πt versus collision
frequency ν in a log–log plot. Transport mechanisms for various
regimes are explained in the text.

by 2π . When |mωθ − nωζ | ≈ 0, there is a resonance that
leads to the plateau regime when the singularity is resolved by
the collisions. The bounce-transit and drift resonances [22, 23]
also have plateau scaling although the magnitudes are different.

When ν∗ < 1, wobbling bananas drift off the magnetic
surface and dominate the transport processes. The theory is
an extension of the stellarator transport theory [24] to include
multiple modes and to allow for |m − nq| ∼ 1. In the 1/ν

regime [3], the step size +r limited by the collisions scales
as +r ∼ vdr/νeff , where vdr is the radial drift speed, and
νeff ∼ ν/ε. The fraction of particles involved is fr ∼

√
ε.

Thus, the transport coefficient D in this regime scales as D ∼√
εv2

dr/νeff . The resonant fluxes are caused by particles that
have 〈vd ·∇ζ0〉b ≈ 0 at a particular value of k2. The resonance
can be resolved either by collisions that lead to a superbanana
plateau (Sb-P) regime [25], or by non-linear superbanana
orbits that result in a superbanana (Sb) regime [20]. The
transport fluxes in the superbanana regime are most dangerous
to plasma confinement because the step size only depends on
the geometry. The non-resonant fluxes have 〈vd · ∇ζ0〉b -= 0
and are dominated by particles inside the boundary layer that
have k2 ≈ 1. When the layer width is determined by collisions,
the collisional boundary layer (B-L) dominates and D ∼√

ν [26]. Otherwise, the collisionless detrapping/retrapping
(C-D) process determines the layer width and D ∼ ν [27].
Analytic expressions that join all the asymptotic limits have
been constructed [8] and they are in good agreement with the
numerical results [28]. The theory is refined to include the
effects of finite ∇B drift on the collisional boundary layer
analysis [29] and the superbanana plateau resonance in the
vicinity of the phase space boundary [30].

All these fluxes depend non-linearly on the radial electric
field, except for those in the 1/ν regime. This can be
understood by examining equation (6). In the 1/ν regime,
the collision term 〈C(f01)〉b dominates over the toroidal drift
term 〈vd · ∇ζ0〉b and the latter can be neglected. Thus, the
transport fluxes have a linear dependence on the radial electric
field through the thermodynamic force. In all other regimes,
the toroidal drift term cannot be neglected. The E × B drift
in 〈vd · ∇ζ0〉b introduces the non-linear radial electric field
dependence in these fluxes. The resonant transport fluxes
decrease exponentially with increasing value of the radial

4

⇠ kT
1

eBp

@T

@r

[Shaing NF’12] [Garbet NF’09]

‣Ultimately numerical simulations required
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Part III - NTV and turbulent transport

‣ Stationary rotation profile given by:
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‣ Now, the question is:
“Is there a dominant term or do we need to keep all??”

NTV turbulence

‣ Let’s assume the toroidal flow is         and look how large a 
turbulent flux it would drive

uneo

'
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NTV versus turbulence
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‣ Simplified calculation:
NTV turbulence

R/LT =
R

T

@T

@r
= Cte
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‣ Neglecting residual stress, the divergence of the flux is then:

turb ⇠ [1 + ✏R/LT ][R/LT +
RV

co

�'
]
�'

R
uneo

'

‣Which remains to be compared to the NTV drag rate (ripple-plateau):

NTV ⇠ ✏�2Nv
th

[u' � uneo

' ]
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NTV versus turbulence

turb ⇠ [1 + ✏R/LT ][R/LT +
RV

co

�'
]
�'

R
uneo

'

‣ Some numbers:

NTV ⇠ ✏�2Nv
th

[u' � uneo

' ]

[1.5 - 4].[7 - 14].[1 - 4]

[0.1 - 0.3].[0.5% - 2%]2.[16 - 20].[3e5 - 1e6]

10 - 200 m.s-1

10 - 2000 m.s-1

‣ In many cases, NTV drag and turbulent transport can be expected to 
have a comparable effect on the stationary rotation profile!
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Summary

‣Many physical mechanisms can affect toroidal rotation:
‣ In an axisymmetric tokamak, turbulent transport provides a few 

candidates (especially for residual stress) 
‣ Break the toroidal symmetry and NTV will give you even more of 

them

‣ Rough estimates indicate that turbulent transport and NTV will often 
have a comparable effect on the stationary rotation profile
‣ This is not the full story:
‣ the boundary condition (friction on neutrals, CX losses, orbit 

losses...) is at least as important.
‣ difference between impurity (measured) and bulk rotation is likely 

non negligible

‣ Toroidal rotation physics is definitely complex...
Makes our life a bit difficult but also provides more knobs to control 
the resulting profile (and to explain the wealth of puzzling 
experimental observations)
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Starting point: moment equations

@n

@t
+r · nu = 0 with n =

Z
f dv u =

1

n

Z
vf dv

p = nT =
1

3

Z
m(v � u)2f dv

mn
@u

@t
+mnu ·ru = �rp�r · ⇡ + Zen [E+ u⇥B] +Rcol

⇡ =

Z
m(v � u)(v � u)f dv � p I

‣ density:

‣momentum:

‣ Neoclassical and turbulent contributions included:

and

with

[No particle or momentum sources, for simplicity]

f = f̄0 + f̄1 + . . .+ f̃1 + . . .

‣ heat: ...

NTV turbulence


