Plasma rotation: momentum transport and 3D effects

Yann Camenen

CNRS, Aix-Marseille Univ., Marseille, France

Thanks to X. Garbet and A.G. Peeters

Outline

- Part I
- Axisymmetric fields (2D): turbulent transport
- Part II
- 3D fields: NTV
- Part III
- Which effect dominates?

Disclaimer: I am not a NTV expert...part of this talk may well be quite naive!!

Before starting...

- To discuss rotation, a momentum evolution equation is needed
- Ideally, this evolution equation incorporates all possible/important mechanisms \rightarrow useful framework derived by Callen, APS'09
- Macroscopic quantities from moments of the distribution function:

$$
\begin{aligned}
\text { density } & n=\int f \mathrm{~d} \mathbf{v} \quad \text { flow } \quad \mathbf{u}=\frac{1}{n} \int \mathbf{v} f \mathrm{~d} \mathbf{v} \\
\begin{array}{c}
\text { pressure } \\
\text { tensor }
\end{array} & \underline{\underline{\pi}}=\int m(\mathbf{v}-\mathbf{u})(\mathbf{v}-\mathbf{u}) f \mathrm{~d} \mathbf{v}
\end{aligned}
$$

- Evolution given by the Fokker-Planck equation
- Split the distribution function according to various ordering:

$$
f=\bar{f}_{0}+\frac{\bar{f}_{1}+\ldots}{\text { NTV }}+\underset{\text { turbulence }}{\tilde{f}_{1}+\ldots}
$$

Toroidal angular momentum evolution

- Assume small non-axisymmetry and flux surfaces exist
- Take the momentum equation and:
- sum over species with $m_{e} \ll m_{i}$
- toroidal projection
- flux surface average $<$. >
- incompressible flows
- consider transport time scales (slow)
- focus on NTV (non-resonant) and turbulent transport: (neglect resonant JxB, cross-field neo. transport and sources)

$$
\begin{aligned}
& \frac{\partial}{\partial t}<m n R \mathbf{e}_{\varphi} \cdot \mathbf{u}> \sim-<R \mathbf{e}_{\varphi} \cdot \nabla \cdot \underline{\underline{\pi}}_{i \|}>-\frac{1}{V^{\prime}} \frac{\partial}{\partial r}\left[V^{\prime}<\Pi_{r \varphi}^{\mathrm{turb}}>\right] \\
& \text { NTV turbulence } \\
& \sim<\left(p_{\|}-p_{\perp}\right) \frac{1}{B} \frac{\partial B}{\partial \varphi}>\sim<n m R \tilde{u}_{r} \tilde{u_{\varphi}}+m R u_{\varphi} \tilde{u}_{r} \tilde{n}>
\end{aligned}
$$

[see e.g. Callen NF'09]

Part I - Turbulent transport

- Assume an axisymmetric field \rightarrow no NTV
- Momentum flux carried by the particle flux neglected

$$
\frac{\partial}{\partial t}<m n R \mathbf{e}_{\varphi} \cdot \mathbf{u}>\sim-<R \mathbf{e}_{\varphi} \cdot \nabla \cdot \frac{\pi^{\prime} \cdot \ominus^{\circ}}{=-\theta^{\prime}}-\frac{1}{V^{\prime}} \frac{\partial}{\partial r}\left[V^{\prime}<\Pi_{r \varphi}^{\mathrm{turb}}>\right]
$$

turbulence

$$
\therefore \ll\left(\ddot{p}_{\|}-p_{\perp}\right) \frac{1}{B} \frac{\partial B}{\partial \varphi}>\sim<\sqrt{n m R \tilde{u_{r}} \tilde{u}_{\varphi}}+m R u_{\varphi} \tilde{u}_{r} \tilde{n}>
$$

- In the following:

- Simple picture of the toroidal ITG
- Momentum flux driven by the toroidal rotation gradient (diag. part)
- Momentum flux driven by the toroidal rotation (pinch part)
- A word on residual stress \& summary table

Simple picture of the toroidal ITG

Magnetic drifts

Magnetic drifts

Compression \rightarrow density perturbation

Potential perturbation \rightarrow ExB drift

- Potential perturbation implies ExB drift:

$$
\mathbf{v}_{E \times B}=\frac{\mathbf{b} \times \nabla \phi}{B}
$$

ExB drift \rightarrow radial convection

- Potential perturbation implies ExB drift:

$$
\mathbf{v}_{E \times B}=\frac{\mathbf{b} \times \nabla \phi}{B}
$$

Temperature gradient \rightarrow instability\&transport

What about rotation?

- Finite rotation gradient and ITG turbulence
R

Diag. momentum flux \rightarrow flat rotation profile

rotation

radial flux of
momentum

- As soon as a toroidal rotation gradient exists, the radial flux of momentum induced by the ITG turbulence will relax this gradient
- Only stationary flat profiles are possible
- Whole rotation profile determined by the boundary conditions

Same initial picture + background rotation

Coriolis drift vertical and proportional to $\mathbf{V} / /$

Coriolis drift dependence on $\mathbf{V} / /$ is the key!

Coriolis drift leads to momentum transport

Coriolis pinch \rightarrow peaked rotation profile

- The Coriolis pinch (generally inward) tends to enhance the core rotation
- The diagonal part tends to relax the rotation gradient
- Rotation profile given by the balance between the two terms

General picture

- Parallel symmetry breaking with respect to the midplane required to get turbulent momentum flux
- Symmetry breaking by:
- Toroidal rotation gradient \rightarrow diagonal flux
- Toroidal rotation \rightarrow Coriolis pinch
- Others \rightarrow residual stress
- Generic expression for the turbulent momentum flux:

$$
\Gamma_{\varphi}=n m R_{0}\left[-\chi_{\varphi} \frac{\partial u_{\varphi}}{\partial r}+\underset{\text { diagonal }}{V_{c o} u_{\varphi}}+\underset{\text { pinch }}{\substack{\left.C_{\varphi}\right] \\ \text { residual } \\ \text { stress }}}\right.
$$

- All terms tend to matter for intrinsic rotation!!

Typical tokamak values

Last overview: Peeters NF'11]

- Normalise with thermal velocity V_{th} :

$$
\Gamma_{\varphi}=n m v_{\mathrm{th}} \chi_{\varphi}\left[-\frac{R_{0}}{\frac{v_{\mathrm{th}}}{1-3} \frac{\partial u_{\varphi}}{\partial r}}+\frac{R_{0} V_{c o}}{\chi_{\varphi}} \frac{u_{\varphi}}{v_{\mathrm{th}}}+\frac{R_{0} C_{\varphi}}{v_{\mathrm{th}} \chi_{\varphi}}\right]
$$

- Prandtl number:

$$
\chi_{\varphi} / \chi_{i} \sim 0.6-1 \quad \text { exp/th }
$$

- Pinch number:

$$
R V_{\mathrm{co}} / \chi_{\phi} \sim 1-5 \quad \text { exp/th }
$$

- generally inward
- scales with the trapped particle fraction
- Stress number: $\quad C^{*} / \chi_{\phi} \sim 0-1$
mainly th, few exp quantitative studies
- inward or outward, many components
- can change sign at the ITG/TEM transition [Camenen NF'11]

Part II - NTV

- Now, forget about turbulence and assume small non-axisymmetric perturbations of the magnetic field, e.g. ripple

$$
\begin{aligned}
& \frac{\partial}{\partial t}<m n R \mathbf{e}_{\varphi} \cdot \mathbf{u}>\sim-<R \mathbf{e}_{\varphi} \cdot \nabla \cdot \underline{\pi}_{i \|}>-\frac{1}{V^{\prime}} \frac{\partial}{\partial r}\left[V^{\prime}<\Pi_{r \varphi}^{\text {turb }} . \geqslant>\right]^{\circ \sigma^{\prime}} \\
& \begin{array}{c}
\text { NTV } \\
\sim<\left(p_{\|}-p_{\perp}\right) \frac{1}{B} \frac{\partial B}{\partial \varphi}>\sim<n p r \approx \tilde{\tilde{u_{r}}} \tilde{u_{\varphi}}+m R u_{\varphi} \tilde{u}_{r} \tilde{n}>
\end{array}
\end{aligned}
$$

- In the following:

- A word on trapped particles orbits in rippled tokamaks
- Impact on the rotation profile
- Big brush picture

Rippled tokamaks

- Broken toroidal symmetry due to finite number N of toroidal field coils
- Magnetic field given by:

$$
B=B_{0}[1-\epsilon \cos \theta]\left[1-\frac{\delta(r, \theta) \cos N \varphi]}{\text { ripple amplitude }}\right.
$$

- In tokamaks, typically:

$$
\begin{aligned}
& \delta_{\text {LCFS }}=0.1 \%-5 \% \\
& \hline \text { JET: } \\
& \text { TCV/AUG: } 0.1 \% \\
& \text { Tore Supra: } 1 \% \\
& \text { T-6\% }
\end{aligned}
$$

Locally trapped particles

- Broken toroidal symmetry due to finite number N of toroidal field coils

$$
B=B_{0}[1-\epsilon \cos \theta][1-\delta(r, \theta) \cos N \varphi]
$$

- Along a field line, $\varphi=\varphi_{0}+q \theta$, local extrema in B may exist
- Particles can be trapped in these local magnetic wells
- Local wells exist if:

$$
Y=\frac{\epsilon}{N q \delta}|\sin \theta|<1
$$

RATHER SMALL
REGION IN TOKAMAKS

Locally trapped particles

[Yushmanov RPP'90]

- Very bad for high energy particles...

- Can be effectively decreased by ExB drift

Ripple also modifies banana orbits

- Banana bounce time:

$$
\begin{aligned}
v_{\|} & \sim v_{\operatorname{th}} \sqrt{\epsilon} \quad L \sim q R \\
& \longrightarrow \quad \tau_{t} \sim q R /\left(v_{\operatorname{th}} \sqrt{\epsilon}\right)
\end{aligned}
$$

- Parallel velocity modified by ripple:

$$
\begin{aligned}
& v_{\|}=\sqrt{2 \mu / m} \sqrt{B_{\text {bounce }}-\bar{B}}-\underline{B} \\
&+ \text { ripple }
\end{aligned}
$$

- Especially effective near bounce point
- Radial excursion at banana tip:

$$
\sim \rho(q / \epsilon)^{3 / 2} \delta \sqrt{N}
$$

[Yushmanov RPP'90]

Impact on rotation?

- Ripple modifies particle trajectories

\longrightarrow enhanced radial particle flux

- This enhanced particle flux is species dependent (non-ambipolar)

\longrightarrow radial current

- Exerts a JxB torque on the plasma
\longrightarrow toroidal acceleration
- Stops when Er makes the particle flux ambipolar
- How large a torque for a given non-ambipolar diffusion?

$$
m n R \frac{\partial u_{t}}{\partial t}=R \mathbf{e}_{\varphi} \cdot \mathbf{j} \times \mathbf{B}=R j_{r} B_{p}
$$

$$
\begin{aligned}
j_{r} & \sim e \Gamma^{\mathrm{na}} \sim e D^{\mathrm{na}} \frac{n}{a} \\
B_{p} & \sim B \epsilon / q
\end{aligned}
$$

torque density

$$
\sim \frac{n e B}{q} D^{\mathrm{na}}
$$

$$
\longrightarrow 0.2 \mathrm{~m}^{2} / \mathrm{s} \text { gives } \sim 1-2 \mathrm{~N} . \mathrm{m} / \mathrm{m}^{3}
$$

NTV: general picture \& estimates

- Generic form of the NTV term:

$$
\begin{aligned}
& <R \mathbf{e}_{\varphi} \cdot \nabla \cdot \underline{\underline{\pi}}_{i \|}>\sim n m \nu_{\underline{\text { na }}}\left(<R u_{t}>-<R u_{t}^{\text {neo }}>\right) \\
& \text { damping rate offset rotation } \\
& \text { - Kinetic approach required (at least at low collisionality) }
\end{aligned}
$$

- Can be computed analytically in various limits
- Very useful to highlight the physics (many different regimes!!)

	$\nu_{\text {na }}$	k_{T}
a)	$1.1 \sqrt{\epsilon} \nu$	3.54
b) $\propto \frac{\delta^{2} \epsilon^{3 / 2}}{N q^{3}} \frac{v_{\text {th }}^{2}}{R^{2}} \frac{1}{\nu}$	3.54	
c)	$\propto \delta^{2} N \frac{v_{\text {th }}}{R}$	1.67
		[Garbet NF'09]

- Ultimately numerical simulations required [e.g. Sun PRL'10, Satake PRL'11]

Part III - NTV and turbulent transport

- Stationary rotation profile given by:
- Which roughly gives:

$$
0=-<R \mathbf{e}_{\varphi} \cdot \nabla \cdot \underline{\underline{\pi}}_{i \|}>-\frac{1}{V^{\prime}} \frac{\partial}{\partial r}\left[V^{\prime}<\Pi_{r \varphi}^{\mathrm{turb}}>\right]
$$

$$
r \nu_{\mathrm{na}}\left[u_{\varphi}-u_{\varphi}^{\mathrm{neo}}\right]=-\frac{\partial}{\partial r}\left[r\left[-\chi_{\varphi} \frac{\partial u_{\varphi}}{\partial r}+V_{c o} u_{\varphi}+C_{\varphi}\right]\right]
$$

NTV
turbulence

- Now, the question is:
"Is there a dominant term or do we need to keep all??"
- Let's assume the toroidal flow is $u_{\varphi}^{\text {neo }}$ and look how large a turbulent flux it would drive

NTV versus turbulence

$$
\begin{gathered}
r \nu_{\mathrm{na}}\left[u_{\varphi}-u_{\varphi}^{\mathrm{neo}}\right] \\
\text { NTV }
\end{gathered}=-\frac{\partial}{\partial r}\left[r\left[-\chi_{\varphi} \frac{\partial u_{\varphi}}{\partial r}+V_{c o} u_{\varphi}+C_{\varphi}\right]\right]
$$

- Simplified calculation:

$$
\begin{aligned}
u_{\varphi}^{\text {neo }} & =\frac{k_{T}}{e B} \frac{q}{\epsilon} \frac{\partial T}{\partial r} \\
R / L_{T} & =\frac{R}{T} \frac{\partial T}{\partial r}=C^{\text {te }}
\end{aligned} \quad \longrightarrow \quad \begin{aligned}
& \frac{\partial u_{\varphi}^{\text {neo }}}{\partial r} \frac{u_{\varphi}^{\text {neo }}}{R} R / L_{T} \\
&{ }^{2} u_{\varphi}^{\text {neo }} \\
& \partial r^{2}
\end{aligned} \frac{u_{\varphi}^{\text {neo }}}{R^{2}}\left(R / L_{T}\right)^{2}
$$

- Neglecting residual stress, the divergence of the flux is then:

$$
\text { turb } \sim\left[1+\epsilon R / L_{T}\right]\left[R / L_{T}+\frac{R V_{\mathrm{co}}}{\chi_{\varphi}}\right] \frac{\chi_{\varphi}}{R} u_{\varphi}^{\text {neo }}
$$

- Which remains to be compared to the NTV drag rate (ripple-plateau):

$$
\mathrm{NTV} \sim \epsilon \delta^{2} N v_{\mathrm{th}}\left[u_{\varphi}-u_{\varphi}^{\mathrm{neo}}\right]
$$

NTV versus turbulence

- Some numbers:

$$
\begin{aligned}
& \text { turb } \sim\left[1+\epsilon R / L_{T}\right]\left[R / L_{T}+\frac{R V_{\mathrm{co}}}{\chi_{\varphi}}\right] \frac{\chi_{\varphi}}{R} u_{\varphi}^{\text {neo }} \\
& \text { [1.5-4].[7-14].[1-4] } \longrightarrow 10-200 \text { m.s. }{ }^{-1} \\
& \mathrm{NTV} \sim \epsilon \delta^{2} N v_{\mathrm{th}}\left[u_{\varphi}-u_{\varphi}^{\mathrm{neo}}\right] \\
& \text { [0.1-0.3].[0.5\%-2\%] }{ }^{2} \text {.[16-20].[3e5-1e6] } \longrightarrow \text { 10-2000 m.s-1 } \\
& \text { - In many cases, NTV drag and turbulent transport can be expected to } \\
& \text { have a comparable effect on the stationary rotation profile! }
\end{aligned}
$$

Summary

- Many physical mechanisms can affect toroidal rotation:
- In an axisymmetric tokamak, turbulent transport provides a few candidates (especially for residual stress)
- Break the toroidal symmetry and NTV will give you even more of them
- Rough estimates indicate that turbulent transport and NTV will often have a comparable effect on the stationary rotation profile
- This is not the full story:
- the boundary condition (friction on neutrals, CX losses, orbit losses...) is at least as important.
- difference between impurity (measured) and bulk rotation is likely non negligible
- Toroidal rotation physics is definitely complex... Makes our life a bit difficult but also provides more knobs to control the resulting profile (and to explain the wealth of puzzling experimental observations)

Starting point: moment equations

- density: [No particle or momentum sources, for simplicity]

$$
\frac{\partial n}{\partial t}+\nabla \cdot n \mathbf{u}=0
$$

- momentum:

$$
m n \frac{\partial \mathbf{u}}{\partial t}+m n \mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p-\nabla \cdot \underline{\underline{\pi}}+\operatorname{Zen}[\mathbf{E}+\mathbf{u} \times \mathbf{B}]+\mathbf{R}^{\mathrm{col}}
$$

$$
\text { with } \quad \begin{aligned}
& p=n T=\frac{1}{3} \int m(\mathbf{v}-\mathbf{u})^{2} f \mathrm{~d} \mathbf{v} \\
\underline{\underline{\pi}} & =\int m(\mathbf{v}-\mathbf{u})(\mathbf{v}-\mathbf{u}) f \mathrm{~d} \mathbf{v}-p \underline{\underline{I}}
\end{aligned}
$$

- heat: ...

$$
\text { with } \quad n=\int f \mathrm{~d} \mathbf{v} \quad \text { and } \quad \mathbf{u}=\frac{1}{n} \int \mathbf{v} f \mathrm{~d} \mathbf{v}
$$

- Neoclassical and turbulent contributions included:

$$
f=\bar{f}_{0}+\frac{\bar{f}_{1}+\ldots+\underset{\text { NTV }}{\text { turbulence }}}{\tilde{f}_{1}+\ldots}
$$

