3D effects on fast (and slow) ion confinement and wall loads in tokamaks

T. Kurki-Suonio, Aalto University

for the ASCOT team

O. Asunta, E. Hirvijoki, T. Koskela, J. Miettunen, S. Sipilä, A. Snicker, and S. Äkäslompolo
Contents

★ A short introduction to the tokamak world of charged particles
★ Away from axisymmetry, Part I: external 3D effects:
 - TF coils
 - Ferritic inserts (FI)
 - TBMs and other magnetized materials
 - ELM control coils (ECC)
★ Away from axisymmetry, Part II: internal 3D effects
 - Neoclassical tearing modes (NTMs)
 - Alfvén Eigenmodes (X-AEs)

These topics are seasoned with simulation examples.
In the dream world of theorists: The Perfect Axisymmetry

★ Passing particles and banana-trapped ones
★ Trapping due to $B_T \propto 1/R$ dependence in toroidal geometry

➔ NC transport w/ the step size of banana orbit width $\Delta_b \propto v/\Omega_p = mv/qB_p$.

increases w/ particle energy reduces with I_p

➔ need high I_p to confine fusion alphas
Tokamak reality

- Inside the plasma, a multitude of *MHD modes* can exist, pushing it around, twisting it and even breaking it into islands
- Near the periphery, the plasma sees the *engineering* reality:
 - the field-producing coils are not infinitesimally close to each other
 - some components get magnetized, sucking in part of the magnetic flux
 - external coils shape and perturb (at least) the edge magnetic field
EXTERNAL 3D EFFECTS
Basic tokamak reality

- Only finite # of TF coils
- B-field becomes a "toroidal sausage" = Toroidal Field Ripple
- Ions w/ small enough v_\parallel can get trapped even toroidally, between adjacent field coils
- Direct ripple losses = practically vertical

A 100keV deuteron $v_\parallel/v = 0.07$ followed for 100μs in AUG:
 - Axisymmetric B-field
 - With TF ripple
Basic tokamak reality cont’d

★ Even ions w/ higher $v_{||}$ get affected: the banana tips start to wander due to the toroidal variation of the ‘TF sausage’

➔ ripple-enhanced collisional diffusion, or
gostochastic ripple diffusion

A 100keV deuteron $v_{||}/v = 0.2$ followed for 100µs in AUG:

- axisymmetric B field
- with TF ripple
ITER reality:
There is more to life than the TF ripple...

Even the harmonic ripple structure is destroyed by things like

- Presence of ferritic material in the walls
 - Ferritic inserts (FI) reduce the TF ripple
 - Ferritic structures can introduce strong local perturbations. **Prime example: TBMs in ITER**
 - Also by lack of FIs (around NBI ports)
- External coils can generate their own ‘ripples’ at their will.
 - **Prime example: ELM mitigation coils in ITER** (and, today, at AUG, DIII-D, JET)
Reducing toroidal ripple: ferritic inserts

A finite number of TF coils → non-axisymmetric field. The local magnetic “bottle” between two TF coils can trap charged particles, which quickly drift out of the plasma.

With ferromagnetic steel inserts placed at the coils, the ripple can be minimized.
Test Blanket Modules (TBM)

TBM's containing ferritic steel very close to the plasma are placed at three toroidal locations between TF coils.
\(B_T(\varphi) \) at the OMP separatrix
in ITER 9MA Scenario

Toroidal ripple 1.1%,

Field bump due to NBI ports 0.57%

Field bump due to TBMs 1.1%
Theoretical understanding

- The effect of the periodic ripple is well understood (Goldston & al., PRL 47 (1981) 647)

- The effect of non-periodic perturbations is NOT under command (the ripple theory cannot be applied to a local perturbation)

- the only way to address the effect of non-periodic field perturbations is by 3D computer simulations
Simulating ions in strongly inhomogeneous magnetic fields

★ Field description: no analytic expression possible
 ➔ discrete field values given on a mesh

★ Particle description:
 - GC orbits: e.g. 4th order Runge Kutta w/ 5th order error estimate. Fast but limited to 'boring' backgrounds
 - Gyro orbits: e.g., Leap-Frog. CPU-expensive

★ 3D fast ion codes available worldwide:
 - OFMC-3D (Japan)
 - DRIFT (Russia)
 - SPIRAL (USA)
 - ASCOT (Finland)
 - ...
ASCOT
Racetrack for tokamak particles

Fully 3D
- 3D magnetic field
- 3D Wall

Ab initio particle loading
- Fusion alphas (thermonuclear, beam-target, beam-beam)
- NBI-generated ions

Realistic orbit tracing
- Guiding center (fast)
- gyro orbit (accurate)

Comprehensive interactions
- Coulomb collisions
- Turbulent transport
- Models for relevant MHD:
 • NTM-type magnetic islands
 • Alfven Eigenmodes
Some examples:
3D effects on tokamak ions à l’ASCOT

★ The 3D nature of the 1st wall:
 - The effect of 1st wall structure on fusion-alpha wall load in ITER
 - The mystery of missing C-13 in ASDEX Upgrade

★ The effect of ferritic structures: TBM mock-up experiments at DIII-D
 - Effect on NBI ions
 - Effect on neutrons from DD -> DT fusion reactions

★ The ELM-mitigation coils and wall loads:
 - NBI ions in ASDEX Upgrade
 - Fusion alphas and NBI ions in ITER
The effect of wall configuration

Case study:
Different walls in ITER
Axisymmetry vs ripple vs FI
Fusion alphas in 15MA scenario

Axisymmetric B field

Ripple with FI's
Also wall shape matters...

Original wall w/ 2 limiters

Present wall design w/ poloidally extended ‘continuous’ limiters
The effect of wall configuration

Case study:
Impurity injection experiments in AUG
The case of missing 13C in AUG

Besides fast ions, tritium retention is a hot issue for ITER ➔

- Global impurity migration studies in AUG by injecting 13CH$_4$
- post mortem analysis of samples from selected wall tiles -> 90% missing??
- Common assumption: axisymmetric 13C deposition
- ASCOT simulation w/ a 3D wall and magnetic field: notable non-axisymmetry in 13C deposition (limiters, ICRH antennas, …)

[J. Miettunen et al., NF 52 (2012) 032001]
The effect of ferritic structures

Case Study:
TBM mock-up experiments @ DIII-D
Ripple map w/ and w/o TBM field bump

Max field perturbation along separatrix close to 5% with TBM

\[
\delta(R, z) = \frac{B_{\text{max}}(\phi) - B_{\text{min}}(\phi)}{B_{\text{max}}(\phi) + B_{\text{min}}(\phi)}
\]

Variation of the toroidal field
- with the TBM coils
- in the absence of TBM coils
NBI-generated deuterons in DIII-D discharges w/ TBM mock-up
Beam-target DD reaction $\rightarrow T(1 \text{ MeV})$

Guiding-center following clearly not applicable
\Rightarrow follow full gyro motion (FO integration)
DD \rightarrow DT \rightarrow n (14 MeV)

M. Schaffer & al, Nucl. Fusion 51 (2011) 103028

Experimental neutron flux in the TBM mock-up experiment

Fraction of *confined* tritium in the plasma as calculated by ASCOT
The effect of ELM mitigation coils

Case study:
B coils in ASDEX Upgrade
Losses of 60 keV NBI deuterons

Direct ripple well losses

Additional spot next to the coil
NBI wall power loads: comparing effects of ripple and/or coils

axisymmetric B field

B coils activated

B_T from 16 TF coils

16 TF coils + B coils

Ps. Note the n=2 nature of divertor loads...
The effect of ELM mitigation coils

Case study:
ELM mitigation coils in ITER
Effect of ELM mitigation coils w/ full 90kAt

ITER 15MA scenario

-TBMs alone do not compromise the fast ion confinement
- In the vacuum approximation, ELM coils may create wide ergodic regions inside the separatrix
-Majority of fast (and thermal) ions born on ergodic field lines is lost
Fast (and slow…) ions are lost from ergodic field lines
INTERNAL 3D EFFECTS
ITER plasmas = unlikely MHD quiescent

- ITER plasmas prone to **NTM-type islands** that redistribute fast ions
 - *what is the critical island size from fast ion confinement point of view?*

- The large population of energetic ions likely to drive a multitude of X-AE’s & other EPMs
 - **Effect on fast ion confinement?**

 - NTMs and/or X-AEs can lead to an increased fast ion population at the edge
 - **Is the first wall at jeopardy??**

NTMs in AUG: modes (3,2), (2,1) ja (3,1)
Modelling MHD effects on fast ions

No existing numerical model provided all necessary features for simulating fast ion power loads

Alfvén Eigenmodes and Neoclassical Tearing Modes for Orbit-Following Implementations

[E. Hirvijoki et al., CPC 183 (2012) 2589]

Use non-canonical Hamiltonian formalism & write equations of motion in vector form

★ Applicable with any coordinate system, not just Boozer coordinates
★ compatible with arbitrary external field perturbations (ripple, TBMs, ELM coils)
★ Time-dependency for the modes included
’Internal’ examples:
3D effects on fast ions à l’ASCOT

★ Effect of NTMs on fast ions
 - Thermonuclear alphas in ITER 15MA scenario
★ Effect of TAEs on fast ions
 - Thermonuclear alphas in ITER 9MA scenario w/ n=5 TAE modes

All simulations have full 3D magnetic fields, including also TF ripple, FIs and TBMs
Fusion alphas w/ NTMs

- Steady-state simulation using static NTM modes
- 15 MA ITER scenario using 50k alpha particles
- Amplitude scans for (2,1) and (3,2) NTMs
- Full slowing-down time simulation
At reasonable amplitudes wall power loads not affected

- Mitigation will limit NTM widths to less than \(\approx 10 \text{ cm} \)
- No additional hot spots

(Also NBI ions now simulated: the source and perturbation don’t meet \(\rightarrow \) no significant effect)

A. Snicker et al., under review in NF
Fusion alphas w/ TAEs

- 9 MA ITER scenario w/ full 3D field
- Use only the most unstable mode: $f=51.5$ kHz, $n=5$, $m=10...25$ calculated by LIGKA (thanks to Dr. Lauber)
- 200 000 alpha particles sampling also the mode period ⇒ steady state solution obtained
Redistribution of alphas due to TAEs

Density increased at HFS

Ions moved from trapped to passing

A. Snicker et al., under review in NF
Effects due to TAE *globally*

Redistribution of fast ions likely to affect not only wall power loads but also heating and current drive profiles.

- A change of up to 10% in the heating profile observed.
- Similar changes in current drive profile TBD.
- But also good news: *Only very minor changes in the wall power loads.*

![Graph showing relative change in the electron heating with and without the TAE.](image)
Conclusions

So far, no 3D show-stopper found for ITER as far as fast ion power loads are concerned.

The world of tokamak particles not fully analyzed yet - not even with ASCOT:

★ The engineering world is coming alarmingly close to the world of physicists
 ➔ Refining edge calculations: GRT-379
★ Refining MHD modelling:
 ➔ Multiple modes simultaneously
 ➔ Fastest growing mode not necessarily the most hazardous
★ ITER problems call for 'renaissance' physicists - broader understanding needed!
Thank you for your attention!
Acknowledgements

For input data:
• ITER Organization, IPP Garching, General Atomics

For computing resources:
• The supercomputing resources of CSC – IT center for science, Finland
• HPC-FF and HELIOS

For funding:
• F4E GRT-379
• The Academy of Finland Projects 121371, 134924 and 259675

This work, supported by the European Communities under the contract of Association between Euratom/Tekes, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Main features of the model

Perturbations in \mathbf{A} and Φ allow time-dependent mode:

$$\mathbf{\tilde{A}} = \alpha(\psi_p, \theta, \zeta, t) \mathbf{B}$$

$$\alpha = \sum_{nm} \alpha_{nm}(\psi_p) \sin(n\zeta - m\theta - \omega_{nm}t)$$

$$\mathbf{\tilde{\Phi}} = \sum_{nm} \mathbf{\tilde{\Phi}}_{nm}(\psi_p) \sin(n\zeta - m\theta - \omega_{nm}t)$$

$$\mathbf{B}^* = \mathbf{B} + (\rho_\parallel + \alpha) \nabla \times \mathbf{B},$$

$$\mathbf{E}^* = \mathbf{E} - \frac{1}{e\gamma} \left(\mu + \frac{e^2 B \rho_\parallel^2}{m} \right) \nabla B$$

$$- \nabla \mathbf{\tilde{\Phi}} - (\rho_\parallel + \alpha) \frac{\partial \mathbf{B}}{\partial t} + \frac{e B^2 \rho_\parallel}{\gamma m} \nabla \alpha$$
Equations of motion

GC Lagrangian + Euler-Lagrangian equation ➔

\[
\dot{\chi} = \frac{eB}{\gamma m},
\]

\[
\dot{\mu} = 0,
\]

\[
\dot{\rho}_\parallel = \frac{E^* \cdot B^*}{B^* \cdot B} - \dot{\alpha},
\]

\[
\dot{R} = \frac{eB^2 \rho_\parallel B^*}{\gamma m B^* \cdot B} + \frac{E^* \times B}{B^* \cdot B}
\]